Sharp Stability Inequalities for the Plateau Problem
نویسنده
چکیده
The validity of global quadratic stability inequalities for uniquely regular area minimizing hypersurfaces is proved to be equivalent to the uniform positivity of the second variation of the area. Concerning singular area minimizing hypersurfaces, by a “quantitative calibration” argument we prove quadratic stability inequalities with explicit constants for all the Lawson’s cones, excluding six exceptional cases. As a by-product of these results, explicit lower bounds for the first eigenvalues of the second variation of the area on these cones are derived.
منابع مشابه
Sharp Stability Inequalities for Planar Double Bubbles
In this paper we address the global stability problem for double-bubbles in the plane. This is accomplished by combining the improved convergence theorem for planar clusters developed in [CLM14] with an ad hoc analysis of the problem, which addresses the delicate interaction between the (possible) dislocation of singularities and the multiple-volumes constraint.
متن کاملNew Robust Stability Criteria for Uncertain Neutral Time-Delay Systems With Discrete and Distributed Delays
In this study, delay-dependent robust stability problem is investigated for uncertain neutral systems with discrete and distributed delays. By constructing an augmented Lyapunov-Krasovskii functional involving triple integral terms and taking into account the relationships between the different delays, new less conservative stability and robust stability criteria are established first using the...
متن کاملSharp Stability Theorems for the Anisotropic Sobolev and Log-sobolev Inequalities on Functions of Bounded Variation
Combining rearrangement techniques with Gromov’s proof (via optimal mass transportation) of the 1-Sobolev inequality, we prove a sharp quantitative version of the anisotropic Sobolev inequality on BV (R). As a corollary of this result, we also deduce a sharp stability estimate for the anisotropic 1-log-Sobolev inequality.
متن کاملSome Sharp L 2 Inequalities for Dirac Type Operators ⋆
Sobolev and Hardy type inequalities play an important role in many areas of mathematics and mathematical physics. They have become standard tools in existence and regularity theories for solutions to partial differential equations, in calculus of variations, in geometric measure theory and in stability of matter. In analysis a number of inequalities like the Hardy–Littlewood– Sobolev inequality...
متن کاملExtension of Higher Order Derivatives of Lyapunov Functions in Stability Analysis of Nonlinear Systems
The Lyapunov stability method is the most popular and applicable stability analysis tool of nonlinear dynamic systems. However, there are some bottlenecks in the Lyapunov method, such as need for negative definiteness of the Lyapunov function derivative in the direction of the system’s solutions. In this paper, we develop a new theorem to dispense the need for negative definite-ness of Lyapunov...
متن کامل